

New chalcones bearing a long-chain alkylphenol from the rhizomes of *Alpinia galanga*

Wan-Qiu Yang^a, Yuan Gao^b, Ming Li^b, De-Ren Miao^a* and Fei Wang^b*

^aDepartment of Chemical Science & Technology, Kunming University, Kunming 650214, China; ^bBioBioPha Co., Ltd., Kunming 650201, China

(Received 22 August 2014; final version received 13 January 2015)

Three novel chalcones bearing a long-chain alkylphenol, galanganones A–C (1–3), were isolated from the rhizomes of *Alpinia galanga*. Their structures were elucidated by extensive spectroscopic analysis including 2D NMR experiments. Compounds 1–3 represent the first examples of long-chain alkylphenol-coupled chalcone.

Keywords: Zingiberaceae; *Alpinia galanga*; galanganone; chalcone; long-chain alkylphenol

1. Introduction

Alpinia galanga (commonly called greater galangal), a member of Zingiberaceae family, is used as a traditional medicine and a spice throughout Southeastern Asian countries, especially in Indonesian and Thai cuisines [1]. Alpinia species have been extensively investigated from both a phytochemical and a pharmacological point of view [2-7]. During the course of a program to discover novel bioactive compounds from the genus Alpinia, the chemical constituents of the rhizomes of A. galanga were studied, and three novel chalcones bearing a long-chain alkylphenol moiety, named galanganones A-C (1-3, Figure 1), have been isolated. Compounds 1-3 represent the first examples of long-chain alkylphenolcoupled chalcone, and their presence as markers may be helpful in chemotaxonomic classification. We report herein the isolation and structure elucidation of these intriguing natural products.

2. Results and discussion

Compound 1, a light yellow amorphous solid, showed a quasi-molecular ion peak at m/z 517.2585 [M + H]⁺ in the positive HR-ESI-MS, corresponding to an elemental formula C₃₂H₃₇O₆ (calcd for C₃₂H₃₇O₆, 517.2590). The absorption bands attributable to hydroxy groups at $3425 \,\mathrm{cm}^{-1}$, a conjugated carbonyl group at $1606 \,\mathrm{cm}^{-1}$ and aromatic ring groups at 1562, 1512, and $1436 \,\mathrm{cm}^{-1}$ appeared in the IR spectrum. The ¹H NMR spectrum of **1** in methanol- d_4 (Table 1) exhibited signals for two 1,4-disubstituted benzene rings $(H_2-2' \text{ and } 6', \delta_H 7.02, d, J = 8.8 \text{ Hz}; H_2-3'$ and 5', $\delta_{\rm H}$ 6.62, d, $J = 8.8 \,{\rm Hz}$; H₂-11" and 15", $\delta_{\rm H}$ 7.48, d, $J = 8.5 \,{\rm Hz}$; ${\rm H}_2$ -12" and 14", $\delta_{\rm H}$ 6.81, d, $J = 8.5 \,\text{Hz}$), a singlet aromatic proton (H-5", $\delta_{\rm H}$ 6.01), two *trans*-olefinic functionalities (H-2, $\delta_{\rm H}$ 6.24, dd, J = 15.3, 8.8 Hz; H-3, $\delta_{\rm H}$ 5.51, dt, J = 15.3, 7.0 Hz; H-8", $\delta_{\rm H}$ 7.79, d, H-9″, $J = 15.5 \,\mathrm{Hz};$ 7.65. d, $\delta_{
m H}$ $J = 15.5 \,\mathrm{Hz}$) as indicated by the large coupling constants, an aliphatic methine

^{*}Corresponding authors. Emails: mdr31882@126.com; wangfei@mail.kib.ac.cn

Figure 1. Structures of compounds 1-3.

3

(H-1, $\delta_{\rm H}$ 5.08, d, $J = 8.8 \,\rm{Hz}$), a methoxy $(\delta_{\rm H} 3.89, s)$, an aliphatic methylene (H₂-4, $\delta_{\rm H}$ 2.06, q, $J = 7.0 \,\rm{Hz}$), five high-field methylenes (H₂-5-H₂-9, $\delta_{\rm H}$ 1.22-1.41, overlapped multiplets), and a triplet methyl (H₃-10, $\delta_{\rm H}$ 0.87, t, $J = 7.4 \,{\rm Hz}$). The ¹³C NMR (DEPT) spectrum (Table 1) showed an aromatic ketone (C-7", $\delta_{\rm C}$ 194.1), 22 aromatic/olefinic carbon resonances corresponding to three benzene rings, and two olefin groups (including five oxygenated carbons: C-4', C-2", C-4", C-6", C-13", δ_C 155.8, 166.3, 162.7, 163.8, 161.1, respectively), a methoxy ($\delta_{\rm C}$ 56.2), an aliphatic methine (C-1, $\delta_{\rm C}$ 43.2), six high-field methylenes (C-4, C-5, C-6, C-7, C-8, C-9, $\delta_{\rm C}$ 33.5, 30.6, 30.3, 30.1, 33.1, 23.7, respectively), and a methyl group (C-10, $\delta_{\rm C}$ 14.5).

In the HMBC spectrum of 1 (Figure 2), the cross-peaks from H-8" to C-7", C-9", and C-10", from H-9" to C-7", C-8", and C-11"/15", and from H-5" to C-1", C-3", C-6", and C-7" (weak ⁴J correlation) confirmed the existence of chalcone (1,3diphenylprop-2-en-1-one) part (1a) [4]. In this moiety, the ketone carbonyl carbon (C-7'') was attached to C-3'' according to a weak four-bond correlation from the aromatic singlet (H-5", $\delta_{\rm H}$ 6.01) to C-7". The methoxy group was assigned at C-4" due to the HMBC correlations from H₃-OMe to C-4" and C-5" (weak ${}^{4}J$ correlation). In the ¹H NMR spectrum, the high-field signals at $\delta_{\rm H}$ 0.85–2.10 revealed a saturated C7 alkyl fragment connected to an olefinic group. The HMBC correlations from H-1 to C-2, C-1', and C-2'/6', from H-2 to C-1, C-4, and C-1', and from H-3 to C-1, C-2, C-4, and C-5 indicated that 1 has a (E)-4-(dec-2-en-1-yl)phenol moiety (1b). Considering no oxygen atom was linked to C-1 ($\delta_{\rm C}$ 43.2), the notable low-field shift of H-1 $(\delta_{\rm H} 5.08)$ strongly indicated that the methine carbon (C-1) must be attached directly to three aromatic/olefinic groups. The HMBC correlations from H-1 to C-1'', C-2", and C-6", and from H-2 to C-1" confirmed that 1b was coupled with 1a via a C-1-C-1" bond. In addition, all these secondary metabolites 1-3 occur as racemates in view of the absence of optical activity and Cotton effects in the CD

	1		2		3	
No.	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$
1	5.08 (d, 8.8)	43.2 (d)	5.08	43.2 (d)	5.09 (d, 8.7)	43.2 (d)
2	6.24 (dd, 15.3, 8.8)	132.8 (d)	(d, 8.8) 6.24	132.8 (d)	6.24 (dd, 15.3, 8.7)	132.8 (d)
3	5.51 (dt, 15.3, 7.0)	132.1 (d)	(uu, 15.2, 8.8) 5.51 (dt 15.2, 7.1)	132.1 (d)	5.52 (dt, 15.3, 7.0)	132.1 (d)
4	2.06 (g. 7.0)	33.5 (t)	2.06 (a. 7.1)	33.5 (t)	2.06 (a. 7.0)	33.5 (t)
5	1.36 - 1.42 (m)	30.6(t)	1.36 - 1.42 (m)	30.8(t)	1.36 - 1.42 (m)	30.6(t)
6	1.22 - 1.33 (m)	$30.3 (t)^{a}$	1.22 - 1.33 (m)	$30.6 (t)^{a}$	1.22 - 1.33 (m)	$30.3 (t)^{a}$
7	1.22 - 1.33 (m)	$30.1 (t)^{a}$	1.22 - 1.33 (m)	$30.6 (t)^{a}$	1.22 - 1.33 (m)	$30.1 (t)^{a}$
8	1.22-1.33 (m)	33.1 (t)	1.22–1.33 (m)	$30.5(t)^{a}$	1.22-1.33 (m)	33.1 (t)
9	1.22–1.33 (m)	23.7 (t)	1.22 - 1.33 (m)	$30.2 (t)^{a}$	1.22–1.33 (m)	23.7 (t)
10	0.87 (t, 7.4)	14.5 (g)	1.22–1.33 (m)	33.1 (t)	0.87 (t, 6.9)	14.5 (g)
11			1.22–1.33 (m)	23.8 (t)		
12			0.87 (t, 7.0)	14.5 (q)		
1'		136.8 (s)		136.8 (s)		136.8 (s)
2'/6'	7.02 (d, 8.8)	129.4 (d)	7.02 (d, 8.6)	129.4 (d)	7.03 (d, 8.6)	129.4 (d)
3'/5'	6.62 (d, 8.8)	115.3 (d)	6.61 (d, 8.6)	115.3 (d)	6.62 (d, 8.6)	115.4 (d)
4′		155.8 (s)		155.8 (s)		155.8 (s)
1″		112.3 (s)		112.4 (s)		112.5 (s)
2"		166.3 (s)		166.3 (s)		166.3 (s)
3″		106.5 (s)		106.6 (s)		106.6 (s)
4″		162.7 (s)		162.7 (s)		162.8 (s)
5″	6.01 (s)	91.9 (d)	6.02 (s)	91.9 (d)	6.02 (s)	92.0 (d)
6″		163.8 (s)		163.8 (s)		164.2 (s)
7″		194.1 (s)		194.1 (s)		194.0 (s)
8″	7.79 (d, 15.5)	125.8 (d)	7.79 (d, 15.5)	125.9 (d)	7.92 (d, 15.6)	129.3 (d)
9″	7.65 (d, 15.5)	143.4 (d)	7.65 (d, 15.5)	143.4 (d)	7.66 (d, 15.6)	142.5 (d)
10"		128.4 (s)		128.4 (s)		137.0 (s)
11"/15"	7.48 (d, 8.5)	131.3 (d)	7.49 (d, 8.6)	131.3 (d)	7.61 (br d, 7.4)	129.3 (d)
12"/14"	6.81 (d, 8.5)	116.8 (d)	6.81 (d, 8.6)	116.8 (d)	7.34-7.42 (m)	130.0 (d)
13″		161.1 (s)		161.1 (s)	7.34-7.42 (m)	131.1 (d)
OMe	3.89 (s)	56.2 (q)	3.89 (s)	56.2 (q)	3.89 (s)	56.2 (q)

Table 1. 1 H and 13 C NMR spectral data of compounds 1–3 (1 H: 600 MHz; 13 C: 125 MHz, in CD₃OD).

^a Interchangeable.

Figure 2. Key HMBC correlations of 1.

spectra. Therefore, the structure of **1** was elucidated as (\pm) -(E)-1- $\{2,4$ -dihydroxy-3-[(E)-1-(4-hydroxyphenyl)dec-2-en-1-yl]-

6-methoxyphenyl}-3-(4-hydroxyphenyl) prop-2-en-1-one, and given the trivial name galanganone A.

Compound 2, a light yellow amorphous solid, had the molecular formula $C_{34}H_{40}O_6$ based on the HR-ESI-MS (pos.), showing a quasi-molecular ion peak at m/z 545.2900 (calcd for $C_{34}H_{41}O_6$, 545.2903) with 15 degrees of unsaturation. It gave almost the same IR spectrum as that of 1. The ¹H and ¹³C NMR spectra (Table 1) were very similar to those of 1, except for two additional methylene resonances in

the alkyl chain in **2**. The NMR spectra revealed a saturated C₉ alkyl fragment connected to an olefinic group at $\delta_{\rm H}$ 2.06 (H₂-4, q, $J = 7.1 \,{\rm Hz})/\delta_{\rm C}$ 33.5, $\delta_{\rm H}$ 1.22– 1.41 (H₂-5–H₂-11, m)/ $\delta_{\rm C}$ 30.2, 30.5, 30.6, 30.6, 30.8, 33.1, 23.8, and $\delta_{\rm H}$ 0.87 (H₃-12, t, $J = 7.0 \,{\rm Hz})/\delta_{\rm C}$ 14.5, which was in agreement with the mass spectrum. Thereupon, the structure of **2** was established as shown in Figure 1 and named galanganone B.

Compound 3, a light yellow amorphous solid, possessed the molecular formula $C_{32}H_{36}O_5$ as determined by the HR-ESI-MS (pos.), showing a quasimolecular ion peak at m/z 523.2458 (calcd for C₃₂H₃₆O₅Na, 523.2460) with 15 degrees of unsaturation. The ¹H and ¹³C NMR spectra (Table 1) were generally similar to those of 1, except that a monosubstituted benzene ring at $\delta_{\rm H}$ 7.61 $(\text{H-}11''/15'', \text{ br d}, J = 7.4 \text{ Hz})/\delta_{\text{C}}$ 129.3, δ_{H} 7.34–7.42 (H-12"/14", m)/ $\delta_{\rm C}$ 130.0, $\delta_{\rm H}$ 7.34–7.42 (H-13", m)/ $\delta_{\rm C}$ 131.1, and $\delta_{\rm C}$ 137.0, replaced a *para*-disubstituted benzene ring of 1. The monosubstituted benzene ring was assigned as ring C, according to the HMBC cross-peaks from H-11"/15" to C-9" and C-13", and from H-8" to C-10". Accordingly, the structure of 3 was determined as shown in Figure 1 and named galanganone C.

3. Experimental

3.1 General experimental procedures

Optical rotations were measured on an SGW_®-3 (INESA Instrument Co., Ltd, Shanghai, China) automatic polarimeter. UV data were obtained from online HPLC analysis. CD spectrum was recorded on a Chirascan (Applied Photophysics, Leatherhead, Surrey, UK). IR spectra were obtained using a Bruker Tensor 27 FT-IR (Bruker Optics GmbH, Ettlingen, Germany) spectrometer with KBr pellets. NMR spectra were acquired on a Bruker Avance III 600 MHz (Bruker BioSpin GmbH, Rheinstetten, Germany) spec-

with the signal trometer solvent (methanol- d_4 : $\delta_{\rm H}$ 3.30 ppm. δ_C 49.00 ppm) as an internal standard. Mass spectra were measured on Waters Xevo TQ-S and Agilent G6230 TOF mass spectrometers. Silica gel 200-300 mesh (Qingdao Marine Chemical, Inc., Qingdao, China), C18 (40-75 µm, Fuji Silysia Chemical Ltd, Kasugai, Aichi, Japan), and Sephadex LH-20 (Amersham Biosciences, Uppsala, Sweden) were used for column chromatography (CC). Medium pressure liquid chromatography (MPLC) was performed on a Büchi Sepacore System equipping with pump manager C-615, pump modules C-605, fraction collector C-660 (Büchi Labortechnik AG, Flawil, Switzerland), and C18 packed columns. Fractions were monitored and analyzed by TLC, in combination with Agilent 1200 series HPLC system equipped with an Extend-C18 column $(5 \,\mu\text{m}, 4.6 \times 150 \,\text{mm}).$

3.2 Plant material

The rhizomes of *A. galanga* were collected in Jinping County of Yunnan Province, China, in May 2009, and identified by Mr Yu Chen of Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (No. BBP0128017AG) was deposited at BioBioPha Co., Ltd.

3.3 Extraction and isolation

Dried and powdered rhizomes (9.5 kg) of *A. galanga* were extracted with EtOH– H_2O (95:5, v/v; 3 × 15 l, each 5 days) at room temperature. The combined filtrates were concentrated under vacuum to produce a thick, dark extract (*ca.* 440 g), which was fractionated by silica gel CC successively eluted with a gradient of increasing acetone in petroleum ether (10:1, 8:1, 5:1, 3:1, 1:1, 0:1; v/v) to yield fractions A–F, respectively. Fraction C (*ca.* 12 g) was further separated on silica gel CC (CHCl₃/EtOAc; 10:1 \rightarrow 5:1),

Sephadex LH-20 CC (CHCl₃/MeOH; 1:1), and normal pressure C18 CC (MeOH/ H_2O ; 9:1) to give 3 (5 mg). Fraction E (ca. 19 g) was subjected to preparative MPLC $(70\% \rightarrow 80\% \text{ MeOH in H}_2\text{O})$, followed by silica gel CC (CHCl₃/MeOH; $15:0 \rightarrow 15:1$) to successively afford subfractions E-1 and E-2. Subfraction E-1 (150 mg) was further purified by Sephadex LH-20 CC (MeOH) to afford 2 (42 mg) and 1 (108 mg) from subfraction E-2 (320 mg) by the same technique. The retention times (t_R) of 1–3 on an analytical HPLC Extend-C18 column ($20\% \rightarrow 100\%$ MeOH in H_2O over 8.0 min followed by 100% MeOH to 13 min, 1.0 ml/min, 25 °C) 10.2, 10.6, and 10.9 min. were respectively.

3.3.1 Galanganone A (1)

Light yellow amorphous solid; UV λ_{max} (MeOH): 370 nm; IR (KBr) ν_{max} : 3425, 2925, 2854, 1606, 1562, 1512, 1436, 1342, 1220, 1169, 1143, 1106 cm⁻¹; for ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (pos.) *m/z*: 517 [M + H]⁺; HR-ESI-MS (pos.) *m/z*: 517.2585 [M + H]⁺ (calcd for C₃₂H₃₇O₆, 517.2590).

3.3.2 Galanganone B (2)

Light yellow amorphous solid; UV λ_{max} (MeOH): 370 nm; IR (KBr) ν_{max} : 3424, 2925, 2853, 1606, 1561, 1512, 1436, 1342, 1219, 1169, 1143, 1106 cm⁻¹; for ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (pos.) *m/z*: 545 [M + H]⁺; HR-ESI-MS (pos.) *m/z*: 545.2900 [M + H]⁺ (calcd for C₃₄H₄₁O₆, 545.2903).

3.3.3 Galanganone C (3)

Light yellow amorphous solid; UV λ_{max} (MeOH): 350 nm; IR (KBr) ν_{max} : 3448, 2926, 2854, 1628, 1511, 1448, 1432, 1384, 1338, 1224 cm⁻¹; for ¹H and ¹³C NMR spectroscopic data, see Table 1; ESI-MS (pos.) m/z: 501 [M + H]⁺; HR-ESI-MS (pos.) m/z: 523.2458 [M + Na]⁺ (calcd for C₃₂H₃₆O₅Na, 523.2460).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by the National Natural Science Foundation of China [grant number 21362018]; Yunnan Provincial Natural Science Foundation [grant number 2013FZ101]; and the "Large-scale Compound Library" project of the National Development and Reform Commission of China.

References

- A.K. Chudiwal, D.P. Jain, and R.S. Somani, *Indian J. Nat. Prod. Resour.* 1, 143 (2010).
- [2] S. Kadota, H. Dong, P. Basnet, J.K. Prasain, G.J. Xu, and T. Namba, *Chem. Pharm. Bull.* **42**(12), 2647 (1994). doi:10.1248/cpb.42.2647.
- J.K. Prasain, Y. Tezuka, J.X. Li, K. Tanaka,
 P. Basnet, H. Dong, T. Namba, and
 S. Kadota, *Tetrahedron* 53(23), 7833 (1997). doi:10.1016/S0040-4020(97) 00474-2.
- [4] J.K. Prasain, J.X. Li, Y. Tezuka, K. Tanaka, P. Basnet, H. Dong, T. Namba, and S. Kadota, *J. Nat. Prod.* **61**(2), 212 (1998). doi:10.1021/np970404d.
- [5] K.S. Ngo and G.D. Brown, *Phytochemistry* 47(6), 1117 (1998). doi:10.1016/S0031-9422(98)80083-6.
- [6] D. Bendjeddou, K. Lalaoui, and D. Satta, J. Ethnopharmacol. 88(2–3), 155 (2003). doi:10.1016/S0378-8741(03)00226-5.
- [7] H. Matsuda, Y. Pongpiriyadacha, T. Morikawa, M. Ochi, and M. Yoshikawa, *Eur. J. Pharmacol.* **471**(1), 59 (2003). doi:10.1016/S0014-2999(03)01785-0.