Alstonic acids A and B, unusual 2,3-secofernane triterpenoids from *Alstonia scholaris*

Fei Wang a,b, Fu-Cai Ren b, Ji-Kai Liu a,*

a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
b BioBioPha Co. Ltd., 132 Lanhei Road, Kunming 650204, China

A R T I C L E I N F O

Article history:
Received 5 November 2008
Received in revised form 4 March 2009
Available online 8 April 2009

Keywords:
Alstonia scholaris
Apocynaceae
2,3-Secofernane triterpenoids
Indole alkaloids
Alstonic acids A and B
X-ray diffraction analysis

A B S T R A C T

2,3-Secofernane triterpenoids, alstonic acids A (1) and B (2), were isolated from the leaves of *Alstonia scholaris* together with an indole alkaloid, N^1^-methoxymethyl picrinine (3). Their structures were established from MS and NMR spectroscopic analyses and confirmed by single crystal X-ray diffraction analysis.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The genus *Alstonia* (Apocynaceae) is widely distributed throughout the tropical regions of Africa and Asia. The phytochemical constituents of *Alstonia* sp. have been extensively investigated; nearly 400 compounds have been isolated and the genus has been historically used in "Dai" ethnomedicine to treat chronic diseases. The leaf extract, developed as a traditionally available traditional Chinese medicine, has been prescribed in hospitals and sold over-the-counter in drug stores (Cai et al., 2008).

As part of our effort to discover structurally diverse and biologically active secondary metabolites from local medicinal plants, the phytochemical investigation of the leaves of *A. scholaris* has led to the isolation of alstonic acids A and B (1–2), new 2,3-secofernane-type triterpenoids, as well as a new monoterpen indole alkaloid, N^1^-methoxymethyl picrinine (3), together with six known alkaloids, picrinine (4) (Abe et al., 1989), 5α-methoxyoctrestramine (5) (Zhou et al., 2005), picralinal (6) (Abe et al., 1989), 19,20-(E)-vallesamine (7) (Atta-ur-Rahman et al., 1987), leuconolam (8) (Goh et al., 1984), and scholaricine (9) (Atta-ur-Rahman et al., 1985). To the best of our knowledge, this report is the first to document naturally occurring 2,3-secofernanes. The cyclization between C-3 and C-9 within alstonic acid B (2) is unprecedented in triterpenoids. The structural elucidation of these unique 2,3-secofernanes is described below.

2. Results and discussion

Compound 1 was isolated as colourless needles. Its molecular formula was determined to be C_{30}H_{46}O_{3} on the basis of negative-ion HRESIMS at m/z 455.3512 (calcd. for C_{30}H_{47}O_{3}, 455.3525), in combination with analysis of the 13C NMR (DEPT) spectrum. The IR spectrum showed absorption bands at 1727, 1699 cm$^{-1}$, attributable to carbonyl groups. The 13C NMR spectrum (Table 1) exhibited 30 carbon signals, including a carboxylic carbonyl and aldehyde carbon resonances at δ_C 174.6 (s), 207.3 (d), a tetra-substituted double bond at δ_C 136.2 (s), 131.3 (s), and eight up-field methyl signals from δ_C 14.4–23.9 ppm. The following 1H NMR signals (Table 1) were readily distinguishable: an aldehyde singlet at δ_H 9.77, two AB methylene protons at δ_H 2.72 (d, $J = 14.5$ Hz), 2.87 (d, $J = 14.5$ Hz), a relative down-field methine proton at δ_H 2.90 (dd, $J = 3.9, 3.7$ Hz), six methyl singlets at δ_H 0.71, 0.74, 0.97, 0.99, 1.19, and 1.28, as well as two methyl doublets at δ_H 0.84 (d, $J = 6.5$ Hz), 0.89 (d, $J = 6.5$ Hz). The NMR spectroscopic data were similar to those of fic-in-8-ene (Ageta et al., 1994), except for the signals ascribed to ring A, which suggest that the compound is a seco-A-ring fernane triterpenoid derivative.

The following HMBC correlations (Table 1) were observed: from the above-mentioned AB methylene protons to a carbonyl carbon at δ_C 174.6 (s, C-2), from δ_H 0.97 (s, Me-23) and 1.19 (s, Me-24) to an aldehyde carbon at δ_C 207.3 (d, C-3), establishing that the
carboxyl and aldehyde groups were positioned at C-2 and C-3, respectively. Therefore, the triterpene acid was elucidated as 2,3-seco-2,3-o xofernane triterpene acid derivative. However, there were some prominent differences as follows: the resonances of the aldehyde and the tetra-substituted double bond were absent for C22H27N2O4, 383.1970), and the 13C NMR (DEPT) spectrum. The IR spectrum showed absorptions at 238, 287 nm, typical of a modified indoline chromophore. The NMR spectrum of alstonic acids A (1) and B (2) was finally confirmed by single crystal X-ray diffraction, and a perspective ORTEP diagram of the molecule is shown in Fig. 2. Although 3,4-seco-A-ring triterpenoids have sometimes been isolated from natural sources, only a few cases of 2,3-seco derivatives have been reported up to now (Baas, 1985; Toriumi et al., 2003).

Compound 2, colourless needles, possesses a molecular formula of C30H46O3 based on the negative-ion HRESIMS at m/z 453.3359 (calcd. for C30H45O3, 453.3368) and supported by analysis of the 13C NMR (DEPT) spectrum. The IR spectrum showed the absorption bands of carbonyl (1737, 1702 cm–1) and a methoxyl group at 1365 cm–1. Significant HMBC correlations (Table 1) from δ1H 1.36, 1.76 (each m, H-11) to δ2C 222.5 (s, C-3), from δ1H 2.25, 2.30 (each d, J = 15.4 Hz, H-1), 5.58 (br d, J = 3.1 Hz, H-7) and 1.00 (s, Me-25) to δ1C 58.1 (s, C-9).

The configuration of H-5 was unambiguously determined to be in an α orientation (i.e., equatorial bond) based on the following evidence: (1) the proton H-5 showed a broad singlet in 1H NMR spectrum (if axial, it should exhibit a typical double doublet, J = 11.0, 4.0 Hz); and (2) the ROESY correlation (Fig. 3) between H-5 and H-6 was observed. Accordingly, the cyclization between C-3 and C-9 must span above the ring-B, so the relative configuration of C-9 was deduced to β. Consequently, the structure of 2 was established as shown in Fig. 1 and named alstonic acid B. The biosynthetic pathway (Fig. 4) of 2 involves an unprecedented C-C cyclization between C-3 and C-9.

Compound 3, obtained as colourless, crystalline powder, has a molecular formula of C22H26N2O4 based on the positive-ion HRESIMS, showing a quasi-molecular ion peak at m/z 383.1965 (calcd. for C22H25N2O4, 383.1970), and the 13C NMR (DEPT) spectrum. The UV spectrum showed absorptions at 238, 287 nm, typical of a modified indoline chromophore. The NMR spectrum of 3 was very similar to that of picrinine (4) (Abe et al., 1989), also isolated from the same species. Nevertheless, there were several additional observed signals in 3: a down-field methylene resonance at δ1H 4.74, 4.95 (each 1H, d, J = 11.0 Hz, δ2C 76.7 (t) and a methoxyl group at δ1H 3.40 (3H, s), δ2C 55.5 (q). Significant HMBC correlations (Table 2) from δ1H 4.74,
4.95 (each 1H, d, J = 11.0 Hz) to δC 106.8 (s, C-2), 147.8 (s, C-13) and 55.5 (q), and from δH 3.40 (3H, s) to δC 76.7 (t), were observed, indicating that a methoxymethyl group must attach to the nitrogen atom in the indoline ring. Thus, the structure of 3 was determined as N1-methoxymethyl picrinine.

It should be mentioned that the configuration of 5-OCH3 in 5 was wrongly assigned in the original literature (Zhou et al., 2005) and should be revised to be in an α orientation. This discrepancy was observed by comparing the NMR spectroscopic data, especially the characteristic coupling constants, with those of analogues (Abe et al., 1994, 1998). The adjustment was also supported by the observed ROESY correlations: H-5β ↔ H-6β, H-5β ↔ H-21β, and H-14α ↔ H-21α.

3. Concluding remarks

Compounds 1 and 2 have been reported as the first known examples of 2,3-secofernane triterpenoids. Their presence as markers may be helpful in chemotaxonomical classifications. Biological investigations for these compounds are underway.

4. Experimental

4.1. General experimental procedures

Melting points were measured on a PHMK 79/2289 micro-melting point apparatus and were presented as uncorrected. Optical rotations were measured on a Horiba SEPA-300 polarimeter. UV spectra were recorded on a Shimadzu UV-2401PC spectrophotometer. IR spectra were obtained using a Bruker Tensor 27 FT-IR spectrometer with KBr pellets. NMR spectra were acquired at room temperature with Bruker DRX-500 and AV-400 instruments. ESI-MS and HRESIMS data were obtained with an API QSTAR Pulsar i spectrometer. X-ray crystallographic data were collected on a Bruker Smart APEX II CCD diffractometer with graphite-monochromated Mo Kα radiation. Silica gel (200–300 mesh, Qingdao Marine Chemical Inc., China) and Sephadex LH-20 (Amersham Biosciences, Sweden) were used for column chromatography. Fractions were monitored by silica gel plates immersed in vanillin-H2SO4 in ethanol or Dragendorff’s reagent, in combination with Agilent 1200 reversed-phase HPLC (Eclipse XDB-C18 column, 5 μm, 4.6 × 150 mm, 50–100% MeOH in H2O over 8 min followed by 100% MeOH to 15 min, 1 ml/min, 25 °C).
4.2. Plant material

Leaves of *A. scholaris* were collected in Yunnan Province, China and identified by Prof. Dr. Hua Peng, Kunming Institute of Botany, CAS. A voucher specimen (BBP2008003AS) was deposited in the Herbarium of Kunming Institute of Botany.

4.3. Extraction and isolation

Air-dried, powdered leaves (8.5 kg) of *A. scholaris* were soaked with EtOH:H₂O (25 L x 3, 95:5, v/v, with each soaking for 3 days) at room temperature and filtered. The filtrate was concentrated in vacuo to give a residue (450 g), which was subjected to silica gel column chromatography (CC) with a gradient elution system of petroleum ether–acetone (100:0 – 0:100) to obtain 18 fractions. Fraction-4 (3.0 g) mainly contained the triterpene acids, eluted with petroleum ether–acetone (90:10), was repeatedly separated and purified by silica gel (petroleum ether:EtOAc = 20:1) and Sephadex LH-20 CC and recrystallization to afford compounds 1 (164 mg) and 2 (13 mg). Fraction-17 (20 g) eluted with acetone was further separated and purified by silica gel (CHCl₃:MeOH = 1:1) and Sephadex LH-20 (CHCl₃:MeOH = 1:1) CC, as well as by recrystallization to yield alkaloid 3 (46 mg).

4.4. Alstonic acid A (1)

Colourless needles (CHCl₃/MeOH); m.p. 244–246 °C; Rf = 0.40 (petroleum ether:EtOAc = 1:1); [α]D²² = −4.4 (c 0.23, CHCl₃); IR (KBr) νmax cm⁻¹: 2928, 2870, 2686, 1727, 1769, 1468, 1406, 1382, 1310, 1241; for ¹H and ¹³C NMR spectroscopic data, see Table 1; ESIMS (neg.) m/z: 455 [M − H]⁻; HRESIMS (neg.) m/z: 455.3512 (calcd. for C₃₀H₄₇O₃, 455.3525).

4.5. Alstonic acid B (2)

Colourless needles (CHCl₃); m.p. 282–284 °C; Rf = 0.60 (petroleum ether:EtOAc = 1:1); [α]D²² = +191.4 (c 0.43, CHCl₃); IR (KBr) νmax cm⁻¹: 3039, 2939, 2869, 1737, 1702, 1635, 1468, 1408, 1380, 1312.

Table 2

NMR spectroscopic data for N₁-methoxymethyl picrinine (3) and 5α-methoxystrictamine (5).

<table>
<thead>
<tr>
<th>No.</th>
<th>dH (J in Hz)</th>
<th>dC mult.</th>
<th>HMBC</th>
<th>dH (J in Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.82 d (4.6)</td>
<td>50.5 d</td>
<td>7, 15, 21</td>
<td>4.48 d (5.1)</td>
</tr>
<tr>
<td>2</td>
<td>4.85 d (2.0)</td>
<td>87.2 d</td>
<td>2, 3, 7</td>
<td>3.87 d (4.0), H₄</td>
</tr>
<tr>
<td>3</td>
<td>2.26 dd (13.6, 2.0)</td>
<td>39.9 t</td>
<td>2, 8, 16</td>
<td>2.20 d (15.0), H₄</td>
</tr>
<tr>
<td>4</td>
<td>3.43 d (13.6)</td>
<td>106.8 s</td>
<td></td>
<td>3.72 dd (15.0, 4.0), H₄</td>
</tr>
<tr>
<td>5</td>
<td>7.13 d (7.3)</td>
<td>1247 d</td>
<td>7, 11, 13</td>
<td>7.61 d (7.7)</td>
</tr>
<tr>
<td>6</td>
<td>6.82 d (7.9, 7.3)</td>
<td>121.0 d</td>
<td>8, 12</td>
<td>7.31 dd (7.7, 7.3)</td>
</tr>
<tr>
<td>7</td>
<td>7.15 dd (7.9, 7.9)</td>
<td>128.2 d</td>
<td>9, 13</td>
<td>7.12 dd (7.3, 7.3)</td>
</tr>
<tr>
<td>8</td>
<td>6.85 d (7.9)</td>
<td>109.0 d</td>
<td>8, 10</td>
<td>7.38 d (7.3)</td>
</tr>
<tr>
<td>9</td>
<td>1.85 dd (143, 2.6)</td>
<td>25.7 t</td>
<td>2, 16, 20</td>
<td>1.75 dd (140, 3.0), H₈</td>
</tr>
<tr>
<td>10</td>
<td>2.18 ddd (143, 43, 3.5)</td>
<td>172.2 s</td>
<td></td>
<td>2.67 ddd (140, 51.2, 21.1), H₈</td>
</tr>
<tr>
<td>11</td>
<td>3.30 br s</td>
<td>31.0 d</td>
<td>19, 21</td>
<td>3.43 br s</td>
</tr>
<tr>
<td>12</td>
<td>2.44 d (3.4)</td>
<td>51.9 d</td>
<td>2, 6, 8, 14, 20</td>
<td>1.90 d (3.8)</td>
</tr>
<tr>
<td>13</td>
<td>1.49 dd (6.9, 2.0)</td>
<td>12.7 q</td>
<td>20</td>
<td>1.53 dd (6.8, 1.7)</td>
</tr>
<tr>
<td>14</td>
<td>5.43 br q (6.9)</td>
<td>121.0 d</td>
<td>15, 21</td>
<td>5.49 br q (6.8)</td>
</tr>
<tr>
<td>15</td>
<td>3.13 d (17.7)</td>
<td>46.2 t</td>
<td>3, 5, 15, 19</td>
<td>3.07 d (17.1), H₉</td>
</tr>
<tr>
<td>16</td>
<td>3.79 br d (17.7)</td>
<td>172.2 s</td>
<td></td>
<td>4.05 br d (17.1), H₉</td>
</tr>
<tr>
<td>17</td>
<td>COOCH₃</td>
<td>3.65 s</td>
<td>51.5 q</td>
<td>COOCH₃</td>
</tr>
<tr>
<td>18</td>
<td>COOCH₃</td>
<td>4.74 d (11.0)</td>
<td>76.7 t</td>
<td>2, 13, OCH₃</td>
</tr>
<tr>
<td>19</td>
<td>CH₃OCH₃</td>
<td>4.95 d (11.0)</td>
<td>55.5 q</td>
<td>NCH₂O</td>
</tr>
<tr>
<td>20</td>
<td>5.30 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3.13 d (17.7)</td>
<td>46.2 t</td>
<td>3, 5, 15, 19</td>
<td>3.07 d (17.1), H₉</td>
</tr>
<tr>
<td>22</td>
<td>3.90 s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.30 s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Determined in CDCl₃ (dH 7.26 ppm, δC 77.0 ppm as int. standard).
1233; for 1H and 13C NMR spectroscopic data, see Table 1; ESI-MS (neg.) m/z: 453 [M − H]−. HRESIMS (neg.) m/z: 453.3359 (calcd. for C30H49O3, 453.3368).

4.6. N1-Methoxymethyl picrinine (3)

Colourless, crystalline powder (CHCl3); m.p. 181–183 °C; Rf = 0.50 (CHCl3:MeOH = 20:1); tR = 8.35 min; 2θ = 0.15 (0 0 1), CHCl3; UV λmaxMeOH nm (log ε): 238 (3.76), 287 (3.26); IR (KBr) νmax cm−1: 3018, 1737, 1609, 1481, 1190, 1172, 1116, 1077; for 1H and 13C NMR spectroscopic data, see Table 2; ESI-MS (pos.) [M + Na]+, 383 [M + H]+, 351 [M − CH3OH]+; HRESIMS (pos.) m/z: 383.1965 (calcd. for C22H27N2O4, 383.1970).

4.7. X-ray crystallographic analysis of alstonic acid A (1)

C30H48O3, MW = 456.68, monoclinic, space group C2, with a = 29.289(7) Å, b = 7.6106(19) Å, c = 12.004(3) Å, β = 94.914(3), V = 2666.0(11) Å3, Z = 4, Dcalc = 1.138 g/cm3, μ(Mo Kα) = 0.071 mm−1, and f(000) = 1008, and T = 298(2) K. A colourless crystal of dimensions 0.21 × 0.13 × 0.04 mm was selected for X-ray analysis. A total of 11673 reflections, collected in the range 1.40° ≤ θ ≤ 28.31°, yielded 6024 unique reflections. The structure was solved using direct methods and was refined by full-matrix least-squares on F2 values for 2268 I > 2σ(I). Hydrogen atoms were fixed at calculated positions. The final indices were R1 = 0.0820, wR2 = 0.1779 and had a goodness-of-fit = 0.948.

Acknowledgements

This work was financially supported by National Basic Research Program of China (973 Program, 2009CB522300), the National Natural Science Foundation of China (30830113) and the R&D fund from BioBioPha Co. Ltd.

Appendix A. Supplementary data

Crystallographic data for structure 1 is deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 705372. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.phytochem.2009.03.007.

References